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Abstract

We continue to pursue our goal to describe the set Spec(n) and the
equivalence relation defined on it. First, we will define Cont(n) — the set
of content vectors of length n — under the motivation to further restrict
possible vectors that can be in Spec(n). We will then define the Young
graph and some related notions, and show that there is a bijection between
Cont(n) and the set of Young tableaux Tab(n) which also preserves the
equivalence class in each set. This discussion will not only enable us to
fulfill our goal stated above but also help to obtain an explicit model of
representations of Sn and derive the formula for their characters.
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1 Review of the Plan

1.1 Basic Definitions

Definition 1.1. The Young-Jucys-Murphy elements X1, X2, . . . , Xn, or
YJM-elements, are the elements of C[Sn]:

Xi = (1, i) + (2, i) + · · ·+ (i− 1, i)

In particular, X1 = 0.

Definition 1.2. The Coxeter generators s1, ..., sn−1 are the elements of Sn:

si = (i, i+ 1)

Definition 1.3. The Young Basis Y is the union of all Gelfand-Tsetlin basis
of all irreducible representations of Sn:

Y =
∐
λ∈S∧

n

{vT }λ

Recall that the YJM-elements consist a set of generators of the Gelfand-
Tsetlin algebra, which is the algebra of all operators diagonal in the Gelfand-
Tsetlin basis. Hence the Young basis is a common eigenbasis of the YJM-
elements, which enables us to make the following definition:

Definition 1.4. For any element v ∈ Y , the weight of v, denoted as α(v), is
the vector

α(v) = (a1, . . . , an) ∈ Cn

where ai is the eigenvalue of Xi on v.

Since each v ∈ Υ is determined uniquely by the eigenvalues of the elements
of GZ(n) on v, the map v 7→ α(v) is a one-to-one correspondence, the inverse
of which we will denote as α 7→ vα.

Definition 1.5. The spectrum of the YJM-elements, or Spec(n) is defined as

Spec(n) = {α(v) | v ∈ Υ}

Also, define a equivalence relation ∼ as

α ∼ β, α, β ∈ Spec(n)

if vα and vβ belong to the same irreducible representation of Sn.

Clearly there is a natural bijection between Spec(n) and the Young basis Y ,
as well as Spec(n)/ ∼ and the set of irreducible representations S∧n .
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1.2 The Plan

Under this context, our plan to analyze the irreducible representations of Sn is
as follows:

1. Describe the set Spec(n)
2. Describe the equivalence relation ∼
3. Calculate the matrix elements in the Young basis
4. Calculate the characters of irreducible representations

Recall the following result proved in Ryan’s talk:

Proposition 1.6. Let

α = (a1, . . . , ai, ai+1, . . . , an) ∈ Spec(n)

Then a1 = 0, ai ∈ Z and

1. ai 6= ai+1 for all i

2. if ai+1 = ai ± 1, then si · vα = ±vα
3. if ai+1 6= ai ± 1, then

α′ = si · α = (a1, . . . , ai+1, ai, . . . , an) ∈ Spec(n)

and α′ ∼ α.

2 Content Vectors

We aim to nearly complete the first two steps of the plan outlined above.

2.1 Motivation and Definition

It can be expected that the transpositions si in the third case of Proposition
1.6 will play an important role in further investigating what values Spec(n) can
take. We call them (i.e. si’s such that ai+1 6= ai ± 1) admissible transpositions.
Indeed, the only hindrance of transporting the value of ai to other positions by
these transpositions are the entries that takes the values ai ± 1 (if they exist),
and one can be motivated to inspect them. Under this motivation we state the
following definition:

Definition 2.1. A vector α = (a1, . . . , an) ∈ Cn is a content vector if α
satisfies the following conditions:

1. a1 = 0

2. for all q > 1, if aq > 0, then ai = aq − 1 for some i < q; and if aq < 0,
then ai = aq + 1 for some i < q

3. if ap = aq = a for some p < q, then

{a− 1, a+ 1} ⊂ {ap+1, . . . , aq−1}
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Also, define Cont(n) as the set of content vectors of length n, with an equiva-
lence relation ≈ defined as

α ≈ β, α, β ∈ Cont(n)

if α is a permutation of β.1

Remark. It follows from easy induction that Cont(n) ⊂ Zn.

2.2 The Theorem

As wanted, it turns out that Spec(n) is a subset of Cont(n). To prove this, we
need the following lemma.

Lemma 2.2. Let α = (a1, . . . , an) ∈ Cn and ai = ai+2 = ai+1 ∓ 1 for some i
— that is, α contains a fragment of the form (a, a± 1, a). Then α /∈ Spec(n).

Proof. Assume α ∈ Spec(n). By Proposition 1.6, sivα = ±vα and si+1vα =
∓vα. This implies sisi+1sivα = ∓vα and si+1sisi+1vα = ±vα, contradicting
the identity sisi+1si = si+1sisi+1.2

Now we proceed to prove the main theorem.

Theorem 2.3. Spec(n) ⊂ Cont(n).

Proof. Let α = (a1, . . . , an) ∈ Spec(n). Denote the three conditions in Defini-
tion 2.1 as (1), (2), (3), and we show α satisfies each of these conditions. Since
X1 = 0, we have a1 = 0, and (1) is true.

We prove that (2) and (3) hold for α by induction on n. The case n = 1 and
n = 2 are straightforward, so let n ≥ 3 and assume the induction hypothesis
that the statement in true for n − 1. Since (a1, . . . , an−1) ∈ Spec(n − 1), it
suffices to prove when q = n in both conditions.

Suppose an > 0. If an−1 = an − 1 then (2) immediately follows. If an−1 =
an + 1, there exists i < n − 1 such that ai = an−1 − 1 = an. Using induction
hypothesis again, there exists j < i such that aj = ai − 1 = an − 1. If an−1 6=
an + 1, then (a1, . . . , an−2, an, an−1) ∈ Spec(n), and applying the induction
hypothesis to (a1, . . . , an−2, an) ∈ Spec(n − 1) shows that there exists some
i < n − 1 that ai = an − 1, so in all cases (2) is true. The case an < 0 can be
proven exactly the same way, except that all the signs are reversed.

Now assume that ap = an = a for some p < n, and that a−1 /∈ {ap+1, . . . , an−1}.
We may assume that p is taken to be the largest possible index, so that a /∈
{ap+1, . . . , an−1}. If a+1 occurs twice or more times in the set {ap+1, . . . , an−1},
a should also occur in it by induction hypothesis, so a+ 1 occurs at most once
in {ap+1, . . . , an−1}. Then {ap+1, . . . , an−1} only contains the numbers different

1In the reference text, this equivalence relation ≈ is defined as α ≈ β if β is an admissible
permutation (i.e. the product of finite number of admissible transpositions) of α, and this is
a mistake. We will soon see that these two definitions are compatible.

2Since sisi+1 is a 3-cycle, (sisi+1)3 = id, so sisi+1si = si+1
−1si

−1si+1
−1 = si+1sisi+1.
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from a − 1, a, a + 1 with at most one possible exception that is equal to a + 1.
Hence, by applying a finite number of admissible transpositions, we obtian an
element in Spec(n) that contains a fragment (a, a) or (a, a+1, a), which are both
impossible by Proposition 1.6 and Lemma 2.2. So a−1 ∈ {ap+1, . . . , an−1}, and
a + 1 ∈ {ap+1, . . . , an−1} can be proven exactly the same way except that all
the signs are reversed.

3 The Young Graph

We now introduce a combinatorial object that visualizes the information of
Cont(n) (and thus helps us to work on it more easily).

3.1 Definitions

Definition 3.1. A Young diagram is a finite stack of boxes arranged in rows
and columns in the way so that the first cell of each row lies in the first column
and the lengths of rows are in non-increasing order.

Figure 1: An example of a Young diagram.

We often denote the Young diagram as a list of the number of boxes in each
row. For example, the above Young diagram is denoted (5, 4, 1). In this sense,
the set of Young diagrams with n boxes is in a natural bijection with the set of
partitions of n.

Definition 3.2. A Young graph Y is a simple directed graph such that its
vertices are the Young diagrams and two vertices ν, η are joined by a directed
edge if ν ⊂ η and η/ν is a single box, in which case we write ν ↗ η.

The first five layers (excluding the empty set) of the Young graph are shown
in the next page.

Definition 3.3. Given a box � ∈ ν in a Young diagram, the number

c(�) = (x-coordinate of �)− (y-coordinate of �)

is called the content of �. Here, the coordinates are defined so that the boxes
in the ith column have x-coordinates equal to i − 1 and the boxes in the jth
row have y-coordinates equal to j − 1.

Definition 3.4. A Young tableau or standard tableau is a path in Y from
∅ to a certain vertice (i.e. a Young diagram). We denote Tab(ν) the set of
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Figure 2: The Young graph.

Young tableaux from ∅ to ν. Also, let Tab(n) the set of Young tableaux from ∅
to a Young diagram with n boxes, that is,

Tab(n) =
⋃
|ν|=n

Tab(ν)

.

A convenient way to represent a path T ∈ Tab(ν)

∅ = ν0 ↗ · · · ↗ νn = ν

is to label the boxes ν1/ν0, . . . , νn/νn−1 of νn by numbers 1, . . . , n, respectively.3

3.2 Application to Analysis of Spec(n)

The following proposition writes the information of content vectors in terms of
the notions related to the Young graph.

Proposition 3.5. Let

T = ν0 ↗ · · · ↗ νn ∈ Tab(n).

The mapping
T 7→ (c(ν1/ν0), . . . , c(νn/νn−1))

3Those who are familiar with the notion of Young tableau as an arbitrary labeling of n
boxes in the Young diagram by 1, . . . , n might be feeling a bit awkward, since our definition
only induces the labelings such that the entries in each row and each column are increasing.
Such tableau that satisfies this condition is called standard in the general context (as the
alternative terminology of Definition 3.4 shows). In this particular talk, every Young tableau
we’ll discuss will be considered standard.
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is a bijection between Tab(n) and Cont(n). Also, for any α, β ∈ Cont(n), we
have α ≈ β if and only if the corresponding paths in this bijection have the
same end (i.e. they are the Young tableaux of the same Young diagram).

Proof. Take arbitrary T = ν0 ↗ · · · ↗ νn ∈ Tab(n) and for i ∈ {1, · · · , n},
denote the box in νi/νi−1 as (xi, yi), where xi and yi are x-coordinate and
y-coordinate of the box, respectively. Note that for every i ∈ {1, · · · , n} and
a nonnegative pair of integers (p, q) such that (p, q) < (xi, yi) (i.e. p ≤ xi,
q ≤ yi, and (p, q) 6= (xi, yi)), there exists a positive integer j < i such that
(xj , yj) = (p, q). In fact, the sequence of sets of boxes ∅ = η0 ⊂ η1 ⊂ · · · ⊂ ηn
such that ηi/ηi−1 = {(ui, vi)} gives a Young tableau if and only if for every
i ∈ {1, · · · , n} and a nonnegative pair of integers (p, q) such that (p, q) < (ui, vi),
there exists a positive integer j < i such that (uj , vj) = (p, q). · · · (∗)

First we prove that T is indeed mapped to a content vector. Denote the three
conditions in Definition 2.1 as (1), (2), (3). Since c(x1, y1) = c(0, 0) = 0−0 = 0,
the vector satisfies (1). For (2), if c(xi, yi) = xi−yi > 0, then xi ≥ 1, so for some
j < i, (xj , yj) = (xi−1, yi) and c(xj , yj) = xj−yj = xi−yi−1 = c(xi, yi)−1; the
case c(xi, yi) < 0 can be proved similarly. For (3), if c(xp, yp) = c(xq, yq) = a for
some p < q, it is straightforward that xp ≤ xq− 1 and yp ≤ yq− 1, so (xp, yp) <
(xq − 1, yq) < (xq, yq) and (xp, yp) < (xq, yq − 1) < (xq, yq). Hence there exists
k, l ∈ {p+ 1, · · · , q − 1} such that (xk, yk) = (xq − 1, yq), (xl, yl) = (xq, yq − 1),
and so c(xk, yk) = a− 1, c(xl, yl) = a+ 1.

Now we prove that for any content vector α = (a1, · · · , an) ∈ Cont(n), there
exists a unique Young tableau that maps to α by induction on n. The case
n = 1 is trivial, so assume n ≥ 2, and that the statement is true for n − 1.
By the induction hypothesis, ν0, ν1, · · · , νn−1 are uniquely determined (under
the assumption that such Young tableau exists), so it suffices to show that
we can choose a unique (xn, yn) which induces a Young tableau and satisfies
c(xn, yn) = an. If such (xn, yn) exists, obviously it should be the smallest pair
of nonnegative integers (z, w) such that z − w = an and (z, w) /∈ νn−1. I now
claim this pair induces a Young tableau. By (∗), it suffices to prove that for
any nonnegative pair of integers (p, q) such that (p, q) < (z, w), (xj , yj) = (p, q)
for some j < n. If z ≥ 1 and w ≥ 1, by our construction of (z, w), there
exists some i < n such that (xi, yi) = (z − 1, w − 1). Using condition (3),
there exists k, l ∈ {i+ 1, · · · , n− 1} such that c(xk, yk) = an − 1 = z − w − 1
and c(xl, yl) = an + 1 = z − w + 1. Since (xi, yi) < (xk, yk) < (xn, yn) and
(xi, yi) < (xl, yl) < (xn, yn), it must follow that (xk, yk) = (z − 1, w) and
(xl, yl) = (z, w − 1). Hence we are done by induction hypothesis, since either
(p, q) ≤ (z − 1, w) or (p, q) ≤ (z, w − 1). If z = 0, then p = 0, q ≤ w − 1.
By condition (2), since an = −w < 0, there exists some i < n such that
c(xi, yi) = an + 1 = −w+ 1. It is easy to deduce that (0, q) ≤ (xi, yi), so we are
done by induction hypothesis. The case w = 0 can be settled in the same way.

Finally, we prove the second part of the proposition. If α, β ∈ Cont(n) satisfy
α ≈ β (i.e. α is a permutation of β), let S the multiset of entries of α. Obviously
S is also the multiset of entries of β. Suppose t is any integer, and appears n
times in S. By the proof of first part of the proposition above, the Young
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diagrams of the corresponding Young tableaux Tα, Tβ contain the smallest n
pairs (zi, wi) of nonnegative integers such that c(zi, wi) = t, and doesn’t contain
any other pair (z′, w′) such that c(z′, w′) = t. Since this is true for every integer
t, the diagrams should be equal. Conversely, if the corresponding final diagrams
are equal, α ≈ β since the multiset of entries of a content vector is equal to
the multiset of values of the content of the boxes in the corresponding Young
diagram.

Now consider the transpositions on the Young tableau that switches the la-
bels of two boxes whose labels are consecutive integers. This operation produces
a Young tableau if and only if the two boxes are located at different rows and
different columns, which is equivalent to the fact that the content values of the
two boxes doesn’t have a difference ±1 (due to the fact that the two boxes have
consecutive labels). In the bijection above, this corresponds exactly to the ad-
missible transpositions in the content vector. Hence admissible transpositions
are transpositions in the Young tableau that switches the boxes with consecutive
labels and preserves the Young tableau structure.

Proposition 3.6. Any two Young tableaux T1, T2 ∈ Tab(ν) with diagram ν
can be obtained from each other by a sequence of admissible transpositions. In
other words, if α, β ∈ Cont(n) and α ≈ β, then β can be obtained from α by a
sequence of admissible transpositions.

Proof. Induct on n; base case n = 1 is easy, so assume n ≥ 2 and the statement
is true for n − 1. It suffices to show that we can transform any Young tableau
T ∈ Tab(ν), ν = (ν1, · · · , νk) to the tableau T0 with the same diagram and
labeled with horizontal monotone numeration (i.e. the box (0, 0) is labeled 1,
(1, 0) is labeled 2, · · · , (ν1 − 1, 0) is labeled ν1, (0, 1) is labeled ν1 + 1, · · · ,
(ν2− 1, 1) is labeled ν1 + ν2, (0, 2) is labeled ν1 + ν2 + 1, · · · ). Consider the box
B = (νk − 1, k − 1) — the last box of the last row or ν — and let i the label of
this box in T . Since all other boxes that share the same row or column with B
have both coordinates smaller than or equal to those of B, they are labeled with
an integer less than i. Hence (i, i + 1) is an admissible transposition, and we
obtain another tableau after swtiching the labels i and i+1 in the corresponding
boxes. After this operation, B is labeled i+ 1, and (i+ 1, i+ 2) is an admissible
transposition in this new tableau. Repeating this n − i times, we obtain a
tableau with B labeled as n. Since the label of B in T0 is also n, by inductive
hypothesis T0 can be obtained from this tableau by a sequence of admissible
transpositions.

Corollary 3.7. If α ∈ Spec(n), β ∈ Cont(n), and α ≈ β, then β ∈ Spec(n)
and α ∼ β.

Proof. By Proposition 3.6, β can be obtained from α by a sequence of admissible
transpositions. Hence by (3) of Proposition 1.6 β is in the same equivalence class
of α in Spec(n).
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4 What’s Next?

It turns out that Spec(n) = Cont(n), the corresponding equivalence relations ∼
and ≈ coincide, and the Young graph Y is the branching graph of the symmetric
groups when each Young diagram is looked upon as its corresponding irreducible
representation (We are almost done with proving this!). This completes the task
of describing the set Spec(n) and the equivalence relation ∼ in our plan. We
will go on to obtain an explicit model of representations of Sn and sketch the
derivation of the formula for their characters.
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